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1 Proof of Decay by Dispersion for the Wave Equation

1.1 Oscillatory integrals and the dispersive inequality for the wave equa-
tion

Last time, we were studying decay by dispersion for the wave equation, �φ = 0. We saw
that, using the Fourier transform, we could write the solution to the equation as

φ(t, x) =

∫
a+(ξ)ei(t|ξ|+x·ξ) dξ +

∫
a−(ξ)ei(−t|ξ|+x·ξ) dξ.

The hope is that studying these integrals will allow us to prove our heuristically derived
rate of dispersion for φ:

|φ(t, x)| . 1

t(d−1)/2
.

We studied the model oscillatory integral

I(λ) =

∫
a(ξ)eiλΦ(ξ) dξ

and proved two general principles:

Theorem 1.1 (Principle of non-stationary phase). If supp a ⊆ {|∂ξΦ| ≥ η}, then∣∣∣∣∫ aeiλΦ dξ

∣∣∣∣ .k,η 1

λk

for all k ≥ 0.

Theorem 1.2 (Principle of stationary phase). Suppose there exists one critical point of Φ
(i.e. one zero of ∂ξΦ) in supp a. Then∣∣∣∣∫ aeiλΦ dξ

∣∣∣∣ .η′ vol({|λΦ| ≤ η′}).

In particular, if Φ = ξn for n ≥ 2, then

|I(λ)| . vol({λ|ξ|n| ≤ 1}) ' λ1/n.
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Our justification for the principle of stationary phase was to use the dyadic decompo-
sition. We chose this method because it is robust.

Now, let us return to the wave equation. Let’s study

I(t, x) =

∫
a+(ξ)ei(t|ξ|+x·ξ) dξ,

where a+ is the amplitude and t|ξ|+ x · ξ is the phase.

Definition 1.1. Let the Besov norm be defined as

‖f‖Bs,p
r

:=

(∑
k

(2sk‖Pkf‖Lp)r

)1/r

,

where Pk is the Littlewood-Paley projection

P̂kf = χ0(ξ/2k)f̂(ξ)

with suppχ0(·/2k) ⊆ {|ξ| ' 2k} and
∑∞

k=−∞ χ0(ξ/2k) = 1 for ξ 6= 0.

Theorem 1.3 (Dispersive inequality for the wave equation). Consider a solution φ to the
wave equation {

�φ = 0

(φ, ∂tφ|t=0(g, h).

Then
‖φ(t, x)‖L∞x . t

−(d−1)/2(‖g‖
B

d+1
2 ,1

1

+ ‖h‖
B

d−1
2 ,1

1

).

The d+1
2 , d−1

2 can be determined by dimensional analysis.
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1.2 Reduction to an oscillatory integral with projected amplitude

In general, if we want L1 → L∞-type bounds, it usually suffices to just consider funda-
mental solutions; the idea is that any L1 data can be split into delta distributions by
convolution. A fundamental solution E+ to the wave equation (with initial data g = 0 and
φ = E+ ∗ h) is {

�E+ = 0 t > 0

(Et, ∂tEt)|t=0 = (0, δ0).

In Fourier space, the initial data looks like

(Ê+, ∂tÊ+)|t=0 = (0, 1).

the constant 1 function has non-compact support, so we want to use a cutoff.
Instead, think of PkE+, which is the solution to the equation with initial data

(P̂kE+, ∂tP̂kE+)|t=0 = (0, χ0(ξ/2k)),

which will give us a nicer oscillatory integral. This will be enough because we can decom-
pose

φ = E+ ∗ h

=
∑
k

((PkE+) ∗ hδt=0)

=
∑
k

(P̃kPkE+) ∗ hδt=0,

where P̃k has the same properties as Pk but with P̃kPk = 1. (We saw this in our study of
Schauder theory.)

=
∑
k

(PkE+ ∗ P̃khδt=0).

We claim that it suffices to prove that

‖PkE+‖L∞x . t
− d−1

2 ‖ ∨χ0(·/2k)‖L12k
d−1
2 .

Proof. If this bound holds, then

‖φ(t, x)‖L∞ =

∥∥∥∥∥∑
k

∫
PkE+(t, x− y)P̃kh(y) dy

∥∥∥∥∥
L∞

.
∑
k

∫
‖PkE+(t, x− y)‖L∞ |P̃kh(y)| dy

. t−
d−1
2

∑
k

2k
d−1
2 ‖P̃kh‖L1 .
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We now claim that it suffices to take k = 0. This is because out bound is invariant
under the scaling (t, x) 7→ (λt, λx). This means that we only need to prove

‖P0E+‖L∞ . t−
d−1
2 .

P0E+ is an oscillatory integral of the form

P0E+ =

∫
a+(ξ)ei(t|ξ|+x·ξ) dx+

∫
a−(ξ)ei(−t|ξ|+x·ξ),

where a± have support in {|ξ| ' 1} and obey |Dαa±| .α 1.
Hence, it suffices to consider

I(t, x) =

∫
a+(ξ)ei(t|ξ|+x·ξ) dx. t−

d−1
2︸ ︷︷ ︸

want

with supp a+ ⊆ {|ξ| ' 1} and |Dαa+| .α 1.

1.3 Estimating the size of the oscillatory integrals

To estimate the size of this oscillatory integral, we look at the critical points of the phase

Φ = t|ξ|+ x · ξ.

When is ∇Φ = 0? Observe that we have the identity ∂ξje
iΦi∂ξjΦe

iΦ, so

eiΦ =
1

i∂ξjΦ
eiΦ.

We may assume, by rotation in x-space that x is parallel to the vector e1. Then

Φ = t|ξ|+ x1ξ1, ∂ξ1 =
tξ1

|ξ|
+ x1, ∂ξjΦ = t

ξj
|ξ|
.

for j 6= 1. Then ξj = 0 for j 6= 1 occurs when ξ1
|ξ| = −x1

t . But ξj = 0 for j 6= 1 implies that

|ξ1| = |ξ|, so

{∇Φ = 0} =

{
∅ if |x1t | 6= 1

{s(−x1

t , 0, . . . , 0) : s > 0} if |x1t | = 1.

If |x1t | > c or |x1t | <
1
c , then we the principle of non-stationary phase should apply, and

we should be able to get 1
max(|t|,|x|)k . The fundamental solution is a cone, and we smoothed
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it out with the projection. This says that ifwe look at a cone inside or outside this original
cone, we get fast decay in t and |x|.

Assume that |x1t | ' 1. We need to look at the domain of Φ near the critical points

∂kΦ = t
ξk
|ξ|

+ x1δ1, k,

∂ξj∂ξkΦ = −tξjξk
|ξ|3

+ t
δj,k
|ξ|

= t
|ξ|2δj,k − ξjξk

|x|3
.

At a critical point, ξ = (−sx1t , 0, . . . , 0),

∇2Φ =

[
0 0
0 t
|ξ|I

]
.

And remember that on the support of a, |ξ| ' 1. Here is the picture:

So the region of stationary phase is {|t(ξ2
2 + · · · ξ2

d)| . 1}, and

volξ2,...,ξd({|t(ξ2
2 + · · · ξ2

d)| . 1}) . t−
d−1
2 .

By the principle of stationary phase, t−
d−1
2 dictates the size of I(t, x).

The actual result can be proven via dyadic decomposition into regions of the form
{t|ξ′|2 ' α}α=20,21,..., where ξ′ = (ξ2, . . . , ξd).
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